= 5 * GB3⑤理解线段垂直平分线及其性质。
⑥掌握基本事实:过直线外一点有且只有一条直线与已知直线平行,掌握平行线的性质定理:两 平行直线被第三直线所截,同位角相相等和内错角相等、同旁内角互补的性质
= 7 * GB3⑦探索并证明平行线的判定定理:两直线被第三直线所截,如果内错角相等(或同旁内角互补)。
= 8 * GB3⑧知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线。
= 9 * GB3⑨了解两条平行线之间距离的意义。
= 10 * GB3⑩了解平行于同一直线的两直线平行。
(4)三角形。
①理解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高线,了解三角形的稳定性。
②掌握并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。证明三角形的任意两边之和大于第三边。
③理解全等三角形的概念,能识别全等三角形的对应边、对应角,掌握两个三角形全等的条件,能证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等。
④探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。
⑤理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。
= 6 * GB3⑥了解等腰三角形的有关概念,探索并证明掌握等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。探索并掌握等腰三角形的判定定理:两底角相等的三角形是等腰三角形。探索等边三角形的性质定理:等边三角形的各角等于60°及等边三角形的判定定理:三个角相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。
⑦了解直角三角形的概念,并掌握直角三角形的性质(直角三角形的两锐角互余,直角三角形斜边上的中线等于斜边的一半)。掌握有两个角互余的三角形是直角三角形。
⑧探索勾股定理及其逆定理,并会运用其解决简单问题。
⑨探索并掌握判定直角三角形全等的“斜边、直角边”定理。
⑩了解三角形重心的概念。
(5)四边形。
①了解多边形的内角和与外角和公式,了解正多边形的概念(顶点、边、内角外角、对角线)。
②掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。
③掌握平行四边形的有关性质和四边形是平行四边形的条件。
④掌握矩形、菱形、正方形、梯形的有关性质和四边形是矩形、菱形、正方形的条件。
⑤探索并证明三角形的中位线定理。
(6)圆。
①理解圆及其有关概念(园、弧、弦、圆心角、圆周角),了解弧、弦、圆心角的关系,了解点与圆与圆的位置关系。
②探索圆周角与圆心角及所对弧的关系,了解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90的圆周角所对的弦是直径;园内接四边形的对角互补。
③了解三角形的内心和外心。
④了解直线和园的位置关系,掌握切线的概念,探索切线与过切点的半径之间的关系。
⑤会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。
⑥了解正多边形的概念及正多边形与园的关系。
(7)尺规作图。
①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线。
②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。
③会利用基本作图完成过不在同一直线上的三点作圆;作三角形的外接圆、内切圆;作园的内接正方形和正六边形。
④在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出做法。
(8)定义、命题、定理
= 1 * GB3①通过具体实例,了解定义、命题、定理、推论的意义。
= 2 * GB3②结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念,会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。
= 3 * GB3③知道证明的意义和证明的必要性,知道证明要合乎逻辑性,知道证明的过程可以有不同的表达形式,会综合法证明的格式。
= 4 * GB3④了解反例的作用,知道利用反例可以判断一个命题是错误的。
= 5 * GB3⑤通过实例体会反证法的含义.
2.图形的变化
(1)图形的轴对称。
①通过具体实例了解轴对称的概念,探索它的基本性质;成轴对称的两个图形中,对应点的连线被对称轴垂直平分。
②能够按要求画出简单平面图形(点、线段、直线、三角形)经过一次或两次轴对称后的图形。
③了解轴对称图形的概念;探索等腰三角形、矩形、菱形、等腰梯形、正多边形、圆的轴对称性质。
④认识自然界和现实生活中的轴对称图形。
(2)图形的旋转。
①通过具体实例认识平面图形关于旋转中心的旋转。探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等。
②了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中对应点的连线经过对称中心,且被对称中心平分。
③探索线段、平行四边形、正多边形、园的中心对称性质。
④认识并欣赏自然界和现实生活中的中心对称图形。
(3)图形的平移
= 1 * GB3①通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条战线上)且相等。
= 2 * GB3②认识并欣赏平移在自然界和现实生活中的应用。
= 3 * GB3③运用图形的轴对称、旋转、平移进行图案设计。
(4)图形的相似。
①了解比例的基本性质,了解线段的比、成比例线段,了解黄金分割。
②认识图形的相似,理解相似图形的性质,了解相似多边形和相似比。
③掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
= 4 * GB3④了解相似三角形的判定定理:两角分别相等的两个三角形;两边成比例且夹角相等 的两个三角形相似;三边成比例的两个三角形相似。
⑤认了解相似三角形性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;识现实生活中物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。
= 6 * GB3⑥了解图形的位似,能够利用位似将一个图形放大或缩小。
= 7 * GB3⑦利用相似的直角三角形,探索并认识锐角三角函数(sinA、cosA、tanA),知道30°,45°,60°角的三角函数值和已知特殊三角函数值求它对应的锐角。
⑧会用锐角三角函数解直角三角形和有关的简单实际问题。
(5)图形的投影。
①通过丰富的实例,了解中心投影和平乡投影的概念。
= 2 * GB3②会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。
= 3 * GB3③了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。
④通过实例,了解上述视图与展开图在现实生活中的应用。
3.图形与坐标。
(1)坐标与图像位置
= 1 * GB3①结合实例进一步体会用有序数对可以表示物体的位置。
= 2 * GB3②理解平面直角系的有关概念,能画出直角坐标系,在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
= 3 * GB3③能建立适当的直角坐标系,描述物体的位置。
= 4 * GB3④在平面上能用方位角和距离刻画两个物体的相等位置。
(2)坐标与图形运动
= 1 * GB3①在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。
= 2 * GB3②在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系。,
= 3 * GB3③在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的 图形与原来的图形具有平移关系,体会图形顶点坐标的变化。
= 4 * GB3④在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条边在坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的。
(三)统计与概率
1.抽样与数据分析。
= 1 * GB3①经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据。
= 2 * GB3②体会抽样的必要性,通过实例了解简单随机抽样。
= 3 * GB3③会制作扇形统计图,能用统计图直观、有效地描述数据。
= 4 * GB3④理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述;根据具体问题,能选择合适的统计量表示数据的集中程度。
= 5 * GB3⑤会计算极差和方差,并会用它们表示数据的离散程度。
= 6 * GB3⑥理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图,能利用频数直方图解释数据中蕴含的信息,并能解决简单的实际问题。
= 7 * GB3⑦)能指出总体、个体、样本,体会样本与总体的关系,能用样本的平均数、方差来估计总体的平均数和方差。
= 8 * GB3⑧能根据统计结果作出合理的判断和预测。
= 9 * GB3⑨)通过表格、折线图、趋势图等,感受随机现象的变化趋势。
2.概率。
= 1 * GB3①能用列举法(包括列表、画树状图)计算简单事件发生的概率,了解指定事件发生的所有可能结果及事件的概率。
= 2 * GB3②知道大量重复实验可以用频率来估计概率。
(四)综合与实践。
1.结合实际情况,经历设计解决问题的方案,并加以实施的过程,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。
2.会反思参与活动的全过程,将研究的过程和结果形成报告或小论文,并能进行交流,进一步获得数学活动经验。
3.通过对有关问题的探讨,了解所学知识(包括其他学科知识)之间的关联,进一步理解有关知识,发展应用意识和能力。